Laboratory for Dynamics of Machines and Structures 
Assessment of the Fatigue Parameters from Random Vibration Testing: Application to a Rivet Joint
 M. Česnik, J. Slavič and M. Boltežar
Journal of Mechanical Engineering, Volume 62, Issue 7-8, 2016, Pages 471-482

download pdf   http://dx.doi.org/10.5545/sv-jme.2016.3774

More research on: vibration fatigue,
Abstract
In order to estimate a structure’s fatigue life when excited with an acceleration profile the fatigue parameters must be known. However, material’s fatigue exponent and fatigue strength are not always readily available, especially for complex structures that include riveted or welded joints for which additional fatigue tests are needed. This study introduces a new fatigue-parameter assessment method based on random vibration loading and its application to a blind-hole rivet joint that diminishes the need for additional fatigue tests. The presented procedure requires a simple experimental setup; however, a more extensive analysis of the experimental results is necessary. The method of fatigue parameter assessment is presented and applied on real, experimentally obtained data from vibration tests of rivet-joint specimens, excited with a random base-vibration load in the frequency range of a single natural frequency. Special attention was given to the modelling of the rivet joint and the uncertainties arising from the riveting process were considered. With the presented procedure it is possible to obtain the fatigue parameters solely from the results of random-vibration testing with different acceleration profiles and therefore diminishing the need for additional classic fatigue tests. The obtained fatigue parameters indirectly include the stress concentration factor and the damping-loss-factor increase during the damage accumulation. Additionally, by applying the random-vibration load the influences of the natural-frequency shift and the small nonlinearities of the structure are reduced, which can present a major issue in classic harmonic-vibration fatigue testing.
Authors

Assistant Professor

Martin Česnik, PhD

  Ladisk, Faculty of Mechanical Engineering, University of Ljubljana
  martin.cesnik@fs.uni-lj.si
  +386 1 4771 227
Scholar Home Xs

Professor

Janko Slavič, PhD

  Ladisk, Faculty of Mechanical Engineering, University of Ljubljana
  janko.slavic@fs.uni-lj.si
  +386 1 4771 226
jankoslavic     jankoslavic    
Scholar Home Xs

Professor

Miha Boltežar, PhD

  Ladisk, Faculty of Mechanical Engineering, University of Ljubljana
  miha.boltezar@fs.uni-lj.si
  +386 1 4771 608
Scholar Home Xs